DJ-1 overexpression restores ischaemic post-conditioning-mediated cardioprotection in diabetic rats: role of autophagy

Author:

Zhou Bin1,Lei Shaoqing1,Xue Rui1,Leng Yan1,Xia Zhengyuan2,Xia Zhong-Yuan1

Affiliation:

1. Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China

2. Department of Anesthesiology, University of Hong Kong, Hong Kong, China

Abstract

IPO (ischaemic post-conditioning) is a promising method of alleviating myocardial IR (ischaemia-reperfusion) injury; however, IPO-mediated cardioprotection is lost in diabetic hearts via mechanisms that remain largely unclear. We hypothesized that decreased cardiac expression of DJ-1, a positive modulator of autophagy, compromises the effectiveness of IPO-induced cardioprotection in diabetic rats. Diabetic rats subjected to myocardial IR (30 min of coronary artery occlusion followed by 120 min of reperfusion) exhibited more severe myocardial injury, less cardiac autophagy, lower DJ-1 expression and AMPK (adenosine monophosphate-activated protein kinase)/mTOR (mammalian target of rapamycin) pathway activity than non-diabetic rats. IPO significantly attenuated myocardial injury and up-regulated cardiac DJ-1 expression, AMPK/mTOR activity and autophagy in non-diabetic rats but not in diabetic rats. AAV9 (adeno-associated virus 9)-mediated cardiac DJ-1 overexpression as well as pretreatment with the autophagy inducer rapamycin restored IPO-induced cardioprotection in diabetic rats, an effect accompanied by AMPK/mTOR activation and autophagy up-regulation. Combining HPO (hypoxic post-conditioning) with DJ-1 overexpression markedly attenuated HR (hypoxia-reoxygenation) injury in H9c2 cells with high glucose (HG, 30 mM) exposure, accompanied by AMPK/mTOR signalling activation and autophagy up-regulation. The DJ-1 overexpression-mediated preservation of HPO-induced cardioprotection was completely inhibited by the AMPK inhibitor compound C (CC) and the autophagy inhibitor 3-MA (3-methyladenine). Thus, decreased cardiac DJ-1 expression, which results in impaired AMPK/mTOR signalling and decreased autophagy, could be a major mechanism underlying the loss of IPO-induced cardioprotection in diabetes.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3