New insights into GATOR2-dependent interactions and its conformational changes in amino acid sensing

Author:

Yang Can1ORCID,Sun Xuan1,Wu Geng1

Affiliation:

1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, the Joint International Research Laboratory of Metabolic and Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China

Abstract

Abstract Eukaryotic cells coordinate growth under different environmental conditions via mechanistic target of rapamycin complex 1 (mTORC1). In the amino-acid-sensing signalling pathway, the GATOR2 complex, containing five evolutionarily conserved subunits (WDR59, Mios, WDR24, Seh1L and Sec13), is required to regulate mTORC1 activity by interacting with upstream CASTOR1 (arginine sensor) and Sestrin2 (leucine sensor and downstream GATOR1 complex). GATOR2 complex utilizes β-propellers to engage with CASTOR1, Sestrin2 and GATOR1, removal of these β-propellers results in substantial loss of mTORC1 capacity. However, structural information regarding the interface between amino acid sensors and GATOR2 remains elusive. With the recent progress of the AI-based tool AlphaFold2 (AF2) for protein structure prediction, structural models were predicted for Sentrin2-WDR24-Seh1L and CASTOR1-Mios β-propeller. Furthermore, the effectiveness of relevant residues within the interface was examined using biochemical experiments combined with molecular dynamics (MD) simulations. Notably, fluorescence resonance energy transfer (FRET) analysis detected the structural transition of GATOR2 in response to amino acid signals, and the deletion of Mios β-propeller severely impeded that change at distinct arginine levels. These findings provide structural perspectives on the association between GATOR2 and amino acid sensors and can facilitate future research on structure determination and function.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3