Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives

Author:

SHOU Magang1,MEI Qin1,ETTORE JR. Michael W.1,DAI Renke2,BAILLIE Thomas A.1,RUSHMORE Thomas H.1

Affiliation:

1. Department of Drug Metabolism, Merck Research Laboratories, West Point, PA 19486, U.S.A.

2. Laboratory of Molecular Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A.

Abstract

Cytochrome P450 3A4 (CYP3A4) plays a prominent role in the metabolism of a vast array of drugs and xenobiotics and exhibits broad substrate specificities. Most cytochrome P450-mediated reactions follow simple Michaelis-Menten kinetics. These parameters are widely accepted to predict pharmacokinetic and pharmacodynamic consequences in vivo caused by exposure to one or multiple drugs. However, CYP3A4 in many cases exhibits allosteric (sigmoidal) characteristics that make the Michaelis constants difficult to estimate. In the present study, diazepam, temazepam and nordiazepam were employed as substrates of CYP3A4 to propose a kinetic model. The model hypothesized that CYP3A4 contains two substrate-binding sites in a single active site that are both distinct and co-operative, and the resulting velocity equation had a good fit with the sigmoidal kinetic observations. Therefore, four pairs of the kinetic estimates (KS1, kα, KS2, kβ, KS3, k∆, KS4 and kγ) were resolved to interpret the features of binding affinity and catalytic ability of CYP3A4. Dissociation constants KS1 and KS2 for two single-substrate-bound enzyme molecules (SE and ES) were 3-50-fold greater than KS3 and KS4 for a two-substrate-bound enzyme (SES), while respective rate constants k∆ and kγ were 3-218-fold greater than kα and kβ, implying that access and binding of the first molecule to either site in an active pocket of CYP3A4 can enhance the binding affinity and reaction rate of the vacant site for the second substrate. Thus our results provide some new insights into the co-operative binding of two substrates in the inner portions of an allosteric CYP3A4 active site.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3