Inflammation and polyamine catabolism: the good, the bad and the ugly

Author:

Babbar N.1,Murray-Stewart T.1,Casero R.A.1

Affiliation:

1. The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231, U.S.A.

Abstract

The induction of polyamine catabolism by specific anti-tumour polyamine analogues has increased interest in the roles polyamine catabolism play in cell growth, death and response to various anti-tumour agents. The relatively recent finding of an inducible mammalian spermine oxidase (SMO/PAOh1), in addition to the two-step spermidine/spermine N1-acetyltransferanse (SSAT)/N1-acetylpolyamine oxidase (APAO) catabolic pathway, underscores the complexities of the regulation of polyamine catabolism by various stimuli. Furthermore, recent data indicate that infectious agents and mediators of inflammation can also up-regulate polyamine catabolism. Induction of SSAT by these agents can reduce intracellular polyamine concentrations and cell growth rate, thus providing a beneficial mechanism by which cells may adapt to inflammatory stress. However, increased polyamine catabolism can also result in substantial increases in intracellular reactive oxygen species (ROS) through the production of H2O2 as a by-product of either APAO or SMO/PAOh1 activity. This increased generation of ROS can have different results, depending on the mechanism of induction and cell types involved. Targeted killing of tumour cells by agents that stimulate SSAT/APAO and/or SMO/PAOh1 is obviously a ‘good’ effect. However, induction of SMO/PAOh1 by inflammation or infectious agents has the potential to produce sufficient ROS in normal, non-tumour cells to lead to DNA damage, mutation and, potentially, carcinogenic transformation (‘bad’). The variation in the induction of these polyamine catabolic enzymes, as well as the level and timing of this induction will dictate the cellular outcome in the presence of both desirable and undesirable effects (‘ugly’). Here we discuss the relative role of each of the steps in polyamine catabolism in response to inflammatory stress.

Publisher

Portland Press Ltd.

Subject

Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3