New frontiers in obstructive sleep apnoea

Author:

Ayas Najib T.1,Hirsch Allen A. J.1,Laher Ismail2,Bradley T. Douglas34,Malhotra Atul5,Polotsky Vsevolod Y.6,Tasali Esra7

Affiliation:

1. Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada

2. Department of Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada

3. Division of Respirology, Centre for Sleep Medicine and Circadian Biology, University of Toronto, Toronto, Canada

4. Sleep Research Laboratory of the Toronto Rehabilitation Institute, University Health Network Toronto, Toronto, Canada

5. Pulmonary and Critical Care Medicine, Faculty of Medicine, University of California San Diego, San Diego, U.S.A.

6. Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, U.S.A.

7. Section of Pulmonary & Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, U.S.A.

Abstract

OSA (obstructive sleep apnoea), the most common respiratory disorder of sleep, is caused by the loss of upper airway dilating muscle activity during sleep superimposed on a narrow upper airway. This results in recurrent nocturnal asphyxia. Termination of these events usually requires arousal from sleep and results in sleep fragmentation and hypoxaemia, which leads to poor quality sleep, excessive daytime sleepiness, reduced quality of life and numerous other serious health consequences. Furthermore, patients with untreated sleep apnoea are at an increased risk of hypertension, stroke, heart failure and atrial fibrillation. Although there are many predisposing risk factors for OSA, including male gender, endocrine disorders, use of muscle relaxants, smoking, fluid retention and increased age, the strongest risk factor is obesity. The aim of the present review is to focus on three cutting-edge topics with respect to OSA. The section on animal models covers various strategies used to simulate the physiology or the effects of OSA in animals, and how these have helped to understand some of the underlying mechanisms of OSA. The section on diabetes discusses current evidence in both humans and animal models demonstrating that intermittent hypoxia and sleep fragmentation has a negative impact on glucose tolerance. Finally, the section on cardiovascular biomarkers reviews the evidence supporting the use of these biomarkers to both measure some of the negative consequences of OSA, as well as the potential benefits of OSA therapies.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3