Gut microbiota and metabolites in the pathogenesis of endocrine disease

Author:

Fenneman Aline C.12ORCID,Rampanelli Elena2,Yin Yue S.3,Ames Jesse3,Blaser Martin J.3,Fliers Eric4,Nieuwdorp Max12

Affiliation:

1. Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

2. Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

3. Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, U.S.A.

4. Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Type 1 diabetes (T1D) and Hashimoto's thyroiditis (HT) are the two most common autoimmune endocrine diseases that have rising global incidence. These diseases are caused by the immune-mediated destruction of hormone-producing endocrine cells, pancreatic beta cells and thyroid follicular cells, respectively. Both genetic predisposition and environmental factors govern the onset of T1D and HT. Recent evidence strongly suggests that the intestinal microbiota plays a role in accelerating or preventing disease progression depending on the compositional and functional profile of the gut bacterial communities. Accumulating evidence points towards the interplay between the disruption of gut microbial homeostasis (dysbiosis) and the breakdown of host immune tolerance at the onset of both diseases. In this review, we will summarize the major recent findings about the microbiome alterations associated with T1D and HT, and the connection of these changes to disease states. Furthermore, we will discuss the potential mechanisms by which gut microbial dysbiosis modulates the course of the disease, including disruption of intestinal barrier integrity and microbial production of immunomodulatory metabolites. The aim of this review is to provide broad insight into the role of gut microbiome in the pathophysiology of these diseases.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3