The impact of heterochromatin on DSB repair

Author:

Goodarzi Aaron A.1,Noon Angela T.1,Jeggo Penny A.1

Affiliation:

1. Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, U.K.

Abstract

DNA NHEJ (non-homologous end-joining) is the major DNA DSB (double-strand break) repair pathway in mammalian cells. Although NHEJ-defective cell lines show marked DSB-repair defects, cells defective in ATM (ataxia telangiectasia mutated) repair most DSBs normally. Thus NHEJ functions independently of ATM signalling. However, ∼15% of radiation-induced DSBs are repaired with slow kinetics and require ATM and the nuclease Artemis. DSBs persisting in the presence of an ATM inhibitor, ATMi, localize to heterochromatin, suggesting that ATM is required for repairing DSBs arising within or close to heterochromatin. Consistent with this, we show that siRNA (small interfering RNA) of key heterochromatic proteins, including KAP-1 [KRAB (Krüppel-associated box) domain-associated protein 1], HP1 (heterochromatin protein 1) and HDAC (histone deacetylase) 1/2, relieves the requirement for ATM for DSB repair. Furthermore, ATMi addition to cell lines with genetic alterations that have an impact on heterochromatin, including Suv39H1/2 (suppressor of variegation 3–9 homologue 1/2)-knockout, ICFa (immunodeficiency, centromeric region instability, facial anomalies syndrome type a) and Hutchinson–Guilford progeria cell lines, fails to have an impact on DSB repair. KAP-1 is a highly dose-dependent, transient and ATM-specific substrate, and mutation of the ATM phosphorylation site on KAP-1 influences DSB repair. Collectively, the findings show that ATM functions to overcome the barrier to DSB repair posed by heterochromatin. However, even in the presence of ATM, γ-H2AX (phosphorylated histone H2AX) foci form on the periphery rather than within heterochromatic centres. Finally, we show that KAP-1's association with heterochromatin is diminished as cells progress through mitosis. We propose that KAP-1 is a critical heterochromatic factor that undergoes specific modifications to promote DSB repair and mitotic progression in a manner that allows localized and transient chromatin relaxation, but precludes significant dismantling of the heterochromatic superstructure.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3