METTL3 promotes osteogenic differentiation of human umbilical cord mesenchymal stem cells by up-regulating m6A modification of circCTTN

Author:

Chen Shujiang12,Duan Xiaoqiong3,He Yanjin12,Chen Wenchuan12

Affiliation:

1. 1State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China

2. 2Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China

3. 3Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China

Abstract

Abstract Background: Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising seed cells in bone tissue engineering. circRNA and N6-methyladenosine (m6A) RNA methylation play important roles in osteogenic differentiation. Here, we investigated the potential relevance of a critical circRNA, hsa_circ_0003376 (circCTTN), and methyltransferase-like 3 (METTL3) in osteogenic differentiation of hUCMSCs. Methods: Expression of circCTTN after hUCMSC osteogenic induction was detected by qRT-PCR. Three databases (RMBase v2.0, BERMP, and SRAMP) were used to predict m6A sites of circCTTN. RNA was enriched by methylated RNA immunoprecipitation (MeRIP), followed by quantitative real-time polymerase chain reaction to detect m6A level of circCTTN after METTL3 overexpression and osteogenic induction. RNA pull-down, Western blotting, and protein mass spectrometry were performed to investigate the potential mechanisms by which METTL3 promoted m6A modification of circCTTN. Bioinformatic analyses based on database (STRING) search and co-immunoprecipitation were used to analyze the proteins that interacted with METTL3. Results: Overexpression of METTL3 promoted osteogenic differentiation of hUCMSCs and increased m6A level of circCTTN. Two potential m6A modification sites of circCTTN were predicted. No direct interaction between METTL3 and circCTTN was observed. Thirty-one proteins were pulled down by probes specific for circCTTN, including NOP2, and two m6A reading proteins, EIF3A and SND1. Bioinformatics analysis and co-immunoprecipitation showed that METTL3 interacted with EIF3A indirectly through NOP2. Conclusions: METTL3 promotes the osteogenic differentiation of hUCMSCs by increasing the m6A level of circCTTN. However, METTL3 does not bind directly to circCTTN. METTL3 interacts with circCTTN indirectly through NOP2 and EIF3A.

Funder

the National Natural Science Foundation of China

Science and Technology Department of Sichuan Province

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3