Emerging roles of the long non-coding RNA 01296/microRNA-143-3p/MSI2 axis in development of thyroid cancer

Author:

Wang Zheng-Lin1,Wang Cong1,Liu Wei1,Ai Zhi-Long1ORCID

Affiliation:

1. Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China

Abstract

Abstract Thyroid cancer (TC) is an endocrine malignancy with rising incidence. Long non-coding RNAs (lncRNAs) can serve as diagnostic and prognostic biomarkers for TC. Thus, we studied roles of LINC01296 in TC progression. Initially, the Gene Expression Omnibus (GEO) database was used to detect the differentially expressed genes in human TC samples and the potential mechanism. Expression of LINC01296 and miR-143-3p in TC tissues and cells was measured. The transfection of TC cells was conducted with si-LINC01296, si-Musashi 2 (MSI2), mimic or inhibitor of miR-143-3p to determine their effects on TC cell proliferation, migration, invasion, apoptosis and the AKT/STAT3 signaling pathway. Finally, in vivo assay was performed to verify role of miR-143-3p in tumorigenesis of TC cells in nude mice. LINC01296 was predicted to bind to miR-143-3p to modulate MSI2 expression, thus regulating the occurrence and development of TC. LINC01296 was up-regulated, while miR-143-3p was down-regulated in TC cells and tissues. LNC01296 specifically bound to miR-143-3p and MSI2 was a target of miR-143-3p. Besides, LINC01296 silencing or miR-143-3p overexpression inhibited migration, invasion, proliferation and advanced apoptosis of TC cells. Additionally, silenced LINC01296 or overexpressed miR-143-3p reduced phosphorylated STAT3/STAT3, phosphorylated AKT/AKT, B-cell lymphoma-2 (Bcl-2) and CyclinD1 levels but elevated BCL2-associated X (Bax), Cleaved Caspase3 and Caspase3 levels. Also, tumorigenesis of TC cells in nude mice was inhibited with the silencing of LINC01296. In summary, LINC01296/miR-143-3p/MSI2 axis regulated development of TC through the AKT/STAT3 signaling pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3