The role of scaffold proteins in MEK/ERK signalling

Author:

Sacks D.B.1

Affiliation:

1. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Thorn 530, 75 Francis Street, Boston, MA 02115, U.S.A.

Abstract

Signal transduction networks allow cells to recognize and respond to changes in the extracellular environment. All eukaryotic cells have MAPK (mitogen-activated protein kinase) pathways that participate in diverse cellular functions, including differentiation, survival, transformation and movement. Five distinct groups of MAPKs have been characterized in mammals, the most extensively studied of which is the Ras/Raf/MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]/ERK cascade. Numerous stimuli, including growth factors and phorbol esters, activate MEK/ERK signalling. How disparate extracellular signals are translated by MEK/ERK into different cellular functions remains obscure. Originally identified in yeast, scaffold proteins are now recognized to contribute to the specificity of MEK/ERK pathways in mammalian cells. These scaffolds include KSR (kinase suppressor of Ras), β-arrestin, MEK partner-1, Sef and IQGAP1. Scaffolds organize multiprotein signalling complexes. This targets MEK/ERK to specific substrates and facilitates communication with other pathways, thereby mediating diverse functions. The adaptor proteins regulate the kinetics, amplitude and localization of MEK/ERK signalling, providing an efficient mechanism that enables an individual extracellular stimulus to promote a specific biological response.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3