Activation of nuclear factor-κB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide

Author:

WANG Suwei1,KOTAMRAJU Srigiridhar1,KONOREV Eugene1,KALIVENDI Shasi1,JOSEPH Joy1,KALYANARAMAN Balaraman1

Affiliation:

1. Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, U.S.A.

Abstract

Doxorubicin (DOX) is a widely used anti-tumour drug. Cardiotoxicity is a major toxic side effect of DOX therapy. Although recent studies implicated an apoptotic pathway in DOX-induced cardiotoxicity, the mechanism of DOX-induced apoptosis remains unclear. In the present study, we investigated the role of reactive oxygen species and the nuclear transcription factor nuclear factor κB (NF-κB) during apoptosis induced by DOX in bovine aortic endothelial cells (BAECs) and adult rat cardiomyocytes. DOX-induced NF-κB activation is both dose- and time-dependent, as demonstrated using electrophoretic mobility-shift assay and luciferase and p65 (Rel A) nuclear-translocation assays. Addition of a cell-permeant iron metalloporphyrin significantly suppressed NF-κB activation and apoptosis induced by DOX. Overexpression of glutathione peroxidase, which detoxifies cellular H2O2, significantly decreased DOX-induced NF-κB activation and apoptosis. Inhibition of DOX-induced NF-κB activation by a cell-permeant peptide SN50 that blocks translocation of the NF-κB complex into the nucleus greatly diminished DOX-induced apoptosis. Apoptosis was inhibited when IκB mutant vector, another NF-κB inhibitor, was added to DOX-treated BAECs. These results suggest that NF-κB activation in DOX-treated endothelial cells and myocytes is pro-apoptotic, in contrast with DOX-treated cancer cells, where NF-κB activation is anti-apoptotic. Removal of intracellular H2O2 protects endothelial cells and myocytes from DOX-induced apoptosis, possibly by inhibiting NF-κB activation. These findings suggest a novel mechanism for enhancing the therapeutic efficacy of DOX.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3