The role of Rap1 in integrin-mediated cell adhesion

Author:

Bos J.L.1,de Bruyn K.1,Enserink J.1,Kuiperij B.1,Rangarajan S.1,Rehmann H.1,Riedl J.1,de Rooij J.1,van Mansfeld F.1,Zwartkruis F.1

Affiliation:

1. Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands

Abstract

Rap1 is a member of the Ras-like small GTPases. Originally the protein was identified in a genome-wide screen for suppressors of Ras transformation, but the mechanism of this reversion remained elusive. We have investigated the signalling function of Rap1. We observed that Rap1 is activated by a large variety of stimuli, including growth factors, neurotransmitters and cytokines. Common second messengers like cAMP, diacylglycerol and calcium are mediators of this activation. These messengers activate guanine nucleotide exchange factors (GEFs), the most notable of which is Epac (exchange protein directly activated by cAMP). However, the downstream effectors of Rap1 are less clear. Although direct connections of Rap1 with the serine/threonine kinases Raf1 and B-raf have been reported, we were unable to find functional evidence for an interaction of endogenous Rap1 signalling with the Raf/extracellular-signal-regulated kinase (ERK) pathway. Instead we observe a clear connection of Rap1 with inside-out signalling to integrins. Indeed, introduction of a constitutively active Rap1 as well as Epac induces integrin-mediated cell adhesion, whereas inhibition of Rap1 signalling by the introduction of Rap1GAP (GTPase-activating protein) inhibits inside-out activation of integrins. More importantly, activation of a Gs-protein-coupled receptor results in integrin-mediated cell adhesion, by a pathway involving Epac and Rap1. From these results, we conclude that one of the functions of receptor-induced Rap1 activation is inside-out regulation of integrins.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3