A role for transglutaminase in glucose-stimulated insulin release from the pancreatic β-cell

Author:

Bungay P J,Owen R A,Coutts I C,Griffin M

Abstract

Preincubation of rat islets of Langerhans with the potent inhibitors of islet transglutaminase activity, monodansylcadaverine (30-100 microM) and N-(5-aminopentyl)-2-naphthalenesulphonamide (100-200 microM), led to significant inhibition of glucose-stimulated insulin release from islets. In contrast, the respective N'-dimethylated derivatives of these two compounds, which did not inhibit islet transglutaminase activity, were much less effective as inhibitors of glucose-stimulated insulin release. None of the compounds inhibited rat spleen protein kinase C activity at concentrations which gave rise to inhibition of glucose-stimulated insulin release. When tested for their effects on calmodulin-stimulated bovine heart phosphodiesterase activity, of the compounds that inhibited insulin release, only monodansylcadaverine did not act as an effective antagonist of calmodulin at concentrations (up to 50 microM) that gave rise to significant inhibition of glucose-stimulated insulin release. Furthermore, at 50 microM, monodansylcadaverine did not inhibit methylation of islet lipids. The inhibition of glucose-stimulated insulin release by monodansylcadaverine is therefore likely to be attributable to its interference with islet transglutaminase activity. The sensitivity of islet transglutaminase to activation by Ca2+ was investigated by using a modified assay incorporating dephosphorylated NN'-dimethylcasein as a substrate protein. The Km for Ca2+ obtained (approx. 3 microM) was an order of magnitude lower than previously reported for the islet enzyme [Bungay, Potter & Griffin (1984) Biochem. J. 219, 819-827]. Mg2+ (2 mM) was found to have little effect on the sensitivity of the enzyme to Ca2+. Investigation of the endogenous substrate proteins of islet transglutaminase by using the Ca2+-dependent incorporation of [14C]methylamine into proteins of islet homogenates demonstrated that most of the incorporated radiolabel was present in cross-linked polymeric aggregates which did not traverse 3% (w/v) acrylamide gels. The radiolabelled polymeric aggregates were present in 71 000 g-sedimented material of homogenates, and their formation was transglutaminase-mediated. These findings provide new evidence for the involvement of islet transglutaminase in the membrane-mediated events necessary for glucose-stimulated insulin release.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3