Early detection and progression of insulin resistance revealed by impaired organismal anti-inflammatory heat shock response during ex vivo whole-blood heat challenge

Author:

Schroeder Helena Trevisan1ORCID,de Lemos Muller Carlos Henrique12ORCID,Rodrigues Maria Inês Lavina1ORCID,Azevedo Marcela Alves de1ORCID,Heck Thiago Gomes34ORCID,Krause Mauricio2ORCID,Homem de Bittencourt Jr. Paulo Ivo1ORCID

Affiliation:

1. 1Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil

2. 2Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil

3. 3Postgraduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), 98700-000 Ijuí, RS, Brazil

4. 4Postgraduate Program in Mathematical and Computational Modelling (PPGMMC), UNIJUI, 98700-000 Ijuí, RS, Brazil

Abstract

Chronic inflammatory diseases, e.g., obesity, cardiovascular disease and type-2 diabetes, progressively suppress the anti-inflammatory heat shock response (HSR) by impairing the synthesis of key components, perpetuating inflammation. Monitoring HSR progression offers predictive value for countering chronic inflammation. This study quantified HSR in high-fat diet (HFD) and normal chow (NC) mice by measuring 70 kDa heat shock protein (HSP70) expression after heat treatment of whole blood samples. To align with human translational relevance, animals were housed within their thermoneutral zone (TNZ). Whole blood was heat-challenged weekly at 42 °C for 1–2 hours over 22 weeks, and ΔHSP70 was calculated as the difference between HSP70 expressions at 42 °C and 37 °C. Results correlated with fasting glycaemia, oral glucose tolerance test, intraperitoneal insulin tolerance test and 2-hour post-glucose load glycaemia. ΔHSP70 levels >0.2250 indicated normal fasting glycaemia, while levels <0.2125 signalled insulin resistance and type-2 diabetes onset. A logistic model (five-parameter logistic) showed progressive HSR decline, with HFD mice exhibiting earlier ΔHSP70 reduction (t1/2 = 3.14 weeks) compared with NC mice (t1/2 = 8.24 weeks), highlighting compromised anti-inflammatory capacity in both groups of mice maintained at TNZ. Remarkably, even NC mice surpassed insulin resistance thresholds by week 22, relevant as control diets confronted interventions. Observed HSR decline mirrors tissue-level suppression in obese and type-2 diabetic individuals, underscoring HSR failure as a hallmark of obesity-driven inflammation. This study introduces a practical whole-blood assay to evaluate HSR suppression, allowing assessment of glycaemic status during obesity onset before any clinical manifestation.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3