Omics of bifidobacteria: research and insights into their health-promoting activities

Author:

Bottacini Francesca1,van Sinderen Douwe1,Ventura Marco23

Affiliation:

1. APC Microbiome Institute, Department of Microbiology, National University of Ireland, Western Road, Cork, Ireland

2. Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

3. Microbiome Research Hub, University of Parma, Parma, Italy

Abstract

Members of the genus Bifidobacterium include gut commensals that are particularly abundant among the microbial communities residing in the gut of healthy breast-fed infants, where their presence has been linked to many beneficial host effects. Next-generation DNA sequencing and comparative and functional genome methodologies have been shown to be particularly useful in exploring the diversity of this genus. These combined approaches have allowed the identification of genetic features related to bifidobacterial establishment in the gut, involving host–microbe as well as microbe–microbe interactions. Among these, proteinaceous structures, which protrude from the bacterial surface, i.e. pili or fimbriae, and exopolysaccharidic cell surface layers or capsules represent crucial features that assist in their colonization and persistence in the gut. As bifidobacteria are colonizers of the large intestine, they have to be able to cope with various sources of osmotic, oxidative, bile and acid stress during their transit across the gastric barrier and the small intestine. Bifidobacterial genomes thus encode various survival mechanisms, such as molecular chaperones and efflux pumps, to overcome such challenges. Bifidobacteria represent part of an anaerobic gut community, and feed on nondigestible carbohydrates through a specialized fermentative metabolic pathway, which in turn produces growth substrates for other members of the gut community. Conversely, bifidobacteria may also be dependent on other (bifido)bacteria to access host- and diet-derived glycans, and these complex co-operative interactions, based on resource sharing and cross-feeding strategies, represent powerful driving forces that shape gut microbiota composition.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3