Pathways of signal transduction employed by vertebrate Hedgehogs

Author:

Riobo Natalia A.1,Manning David R.2

Affiliation:

1. Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A.

2. Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A.

Abstract

Signalling by Hh (Hedgehog) proteins is among the most actively studied receptor-mediated phenomena relevant to development and post-embryonic homoeostatic events. The impact of signalling by the Hh proteins is profound, and work pertaining to the presentation of these proteins and the pathways engaged by them continues to yield unique insights into basic aspects of morphogenic signalling. We review here the mechanisms of signalling relevant to the actions of Hh proteins in vertebrates. We emphasize findings within the past several years on the recognition of, in particular, Sonic hedgehog by target cells, pathways of transduction employed by the seven-pass transmembrane protein Smoothened and end points of action, as manifest in the regulation of the Gli transcription factors. Topics of extended interest are those regarding the employment of heterotrimeric G-proteins and G-protein-coupled receptor kinases by Smoothened. We also address the pathways, insofar as known, linking Smoothened to the expression and stability of Gli1, Gli2 and Gli3. The mechanisms by which Hh proteins signal have few, if any, parallels. It is becoming clear in vertebrates, however, that several facets of signalling are shared in common with other venues of signalling. The challenge in understanding both the actions of Hh proteins and the overlapping forms of regulation will be in understanding, in molecular terms, both common and divergent signalling events.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3