Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic smooth muscle cells

Author:

FABUNMI Rosalind P.1,BAKER Andrew H.1,MURRAY Edward J.2,BOOTH Robert F. G.2,NEWBY Andrew C.1

Affiliation:

1. Department of Cardiology, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, Wales

2. Roche Products Ltd., P.O. Box 8, Welwyn Garden City, Herts. AL7 3AY, U.K.

Abstract

The migration and proliferation of vascular smooth muscle cells (SMCs) during neointima formation in atherosclerosis and angioplasty restenosis is mediated by certain growth factors and cytokines, one action of which may be to promote basement-membrane degradation. To test this hypothesis further, the effects of such growth factors and cytokines on the synthesis of two basement-membrane-degrading metalloproteinases, namely the 72 kDa gelatinase (MMP-2, gelatinase A) and the 95 kDa gelatinase (MMP-9, gelatinase B) and three tissue inhibitors of metalloproteinases (TIMPs) was studied in primary cultured rabbit aortic SMCs. Expression of the 95 kDa gelatinase was increased by phorbol myristate acetate, foetal calf serum, thrombin and interleukin-1α (IL-1α); platelet-derived growth factor (PDGF) BB alone had no effect but acted synergistically with IL-1α. A selective protein kinase C inhibitor, Ro 31-8220, abolished induction of the 95 kDa gelatinase. In contrast, none of the agents tested modulated the synthesis of the 72 kDa gelatinase. We conclude that maximal up-regulation of 95 kDa gelatinase expression requires the concerted action of growth factors and inflammatory cytokines mediated, in part, by a protein kinase C-dependent pathway. TIMP-1 and TIMP-2 were highly expressed, and their synthesis was not affected by growth factors or cytokines. Expression of TIMP-3 mRNAs was, however, increased by PDGF and transforming growth factor β, especially in combination. Divergent regulation of gelatinase and TIMP expression implies that either net synthesis or net degradation of basement membrane can be mediated by appropriate combinations of growth factors and cytokines.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3