The effect of peroxisome-proliferator-activated receptor-α on the activity of the cholesterol 7α-hydroxylase gene

Author:

PATEL Dilip D.1,KNIGHT Brian L.1,SOUTAR Anne K.1,GIBBONS Geoffrey F.2,WADE David P.1

Affiliation:

1. Lipoprotein Group, MRC Clinical Sciences Centre, Hammersmith Hospital, DuCane Road, London W12 ONN, U.K.

2. Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, U.K.

Abstract

Cholesterol 7α-hydroxylase (Cyp7a1) plays a central role in the regulation of bile acid and cholesterol metabolism, and transcription of the gene is controlled by bile acids and hormones acting through a complex interaction with a number of potential steroid-hormone-binding sites. Transcriptional activity of the human CYP7A1 gene promoter transfected into HepG2 cells was decreased in a concentration-dependent manner by co-transfection with an expression vector for peroxisome-proliferator-activated receptor-α (PPARα). This effect was augmented by 9-cis-retinoic acid receptor-α (RXRα) and activators of PPARα to give a maximum inhibition of approx. 80%. The region responsible for this inhibition contained a site known to bind hepatocyte nuclear factor 4 (HNF4), and mutation of this site greatly decreased the effect. Co-expression of HNF4 increased promoter activity and decreased the effect of PPARα. Gel-mobility-shift assays failed to detect any binding of PPARα/RXRα dimers to any regions of the promoter containing potential binding sites. Also the hepatic abundance of Cyp7a1 mRNA in mice in which the PPARα gene was disrupted was the same as in normal mice, both during the dark phase, when the animals were feeding, and during the light phase, when mRNA abundance was greatly increased. Cholesterol feeding produced the same increase in hepatic Cyp7a1 mRNA abundance in PPARα-null animals as in normals. It is concluded that, whereas PPARα can affect CYP7A1 gene transcription in vitro through an indirect action, probably by competing for co-factors, this is unlikely to be a major influence on Cyp7a1 activity under normal physiological conditions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3