The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance

Author:

Devonshire Alan L.1

Affiliation:

1. Department of Insecticides and Fungicides, Rothamsted Experimental Station, Harpenden, Herts. AL5 2JQ, U.K.

Abstract

Carboxylesterases from different strains of Myzus persicae were examined to try to understand their contribution to insecticide resistance. Preliminary evidence that they are involved comes from the good correlation between the degree of resistance and the carboxylesterase and paraoxon-degrading activity in aphid homogenates. Furthermore the carboxylesterase associated with resistance could not be separated from the insecticide-degrading enzyme by electrophoresis or ion-exchange chromatography. Homogenates of resistant aphids hydrolysed paraoxon 60 times faster than did those of susceptible aphids, yet the purified enzymes from both sources had identical catalytic-centre activities towards this substrate and also towards naphth-1-yl acetate, the latter being hydrolysed by both 2×106 times faster than paraoxon. These observations provide evidence that the enzyme from both sources is identical, and that one enzyme hydrolyses both substrates. This was confirmed by relating the rate of paraoxon hydrolysis to the rate at which paraoxon-inhibited carboxylesterase re-activated. Both had the same first-order rate constant (0.01min−1), showing clearly that the hydrolysis of both substrates is brought about by the same enzyme. Its Km for naphth-1-yl acetate was 0.131mm, and for paraoxon 75pm. The latter very small value could not be measured directly, but was calculated from substrate-competition studies coupled with measurements of re-activation of the diethyl phosphorylated enzyme. Since the purified enzymes from resistant and susceptible aphids had the same catalytic-centre activity, the 60-fold difference between strains must be caused by different amounts of the same enzyme resulting from mutations of the regulator gene(s) rather than of the structural gene.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3