Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis

Author:

Martinez Sosa Santiago1,Smith Kenneth J.1

Affiliation:

1. Department of Neuroinflammation and Queen Square MS Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, U.K.

Abstract

The deep and periventricular white matter is preferentially affected in several neurological disorders, including cerebral small vessel disease (SVD) and multiple sclerosis (MS), suggesting that common pathogenic mechanisms may be involved in this injury. Here we consider the potential pathogenic role of tissue hypoxia in lesion development, arising partly from the vascular anatomy of the affected white matter. Specifically, these regions are supplied by a sparse vasculature fed by long, narrow end arteries/arterioles that are vulnerable to oxygen desaturation if perfusion is reduced (as in SVD, MS and diabetes) or if the surrounding tissue is hypoxic (as in MS, at least). The oxygen crisis is exacerbated by a local preponderance of veins, as these can become highly desaturated ‘sinks’ for oxygen that deplete it from surrounding tissues. Additional haemodynamic deficiencies, including sluggish flow and impaired vasomotor reactivity and vessel compliance, further exacerbate oxygen insufficiency. The cells most vulnerable to hypoxic damage, including oligodendrocytes, die first, resulting in demyelination. Indeed, in preclinical models, demyelination is prevented if adequate oxygenation is maintained by raising inspired oxygen concentrations. In agreement with this interpretation, there is a predilection of lesions for the anterior and occipital horns of the lateral ventricles, namely regions located at arterial watersheds, or border zones, known to be especially susceptible to hypoperfusion and hypoxia. Finally, mitochondrial dysfunction due to genetic causes, as occurs in leucodystrophies or due to free radical damage, as occurs in MS, will compound any energy insufficiency resulting from hypoxia. Viewing lesion formation from the standpoint of tissue oxygenation not only reveals that lesion distribution is partly predictable, but may also inform new therapeutic strategies.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3