Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides

Author:

BASAK Ajoy1,ZHONG Mei2,MUNZER Jon S.2,CHRÉTIEN Michel1,SEIDAH Nabil G.2

Affiliation:

1. Laboratory of Molecular Medicine and Disease of Ageing Centre, Loeb Health Research Institute, Ottawa Civic Hospital, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4K9

2. Laboratory of Biochemical Neuroendocrinology, and the Protein Engineering Network of Centres of Excellence, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7

Abstract

Fluorogenic peptides encompassing the processing sites of envelope glycoproteins of the infectious influenza A Hong Kong virus (HKV), Ebola virus (EBOV) and respiratory syncytial virus (RSV) were tested for cleavage by soluble recombinants of the proprotein convertases furin, PC5 and PC7. Kinetic studies with these intramolecularly quenched fluorogenic peptides revealed selective cleavages at the physiological dibasic sites. The HKV peptide is cleaved by both furin and PC5 with similar efficacy; in comparison, PC7 cleaves this substrate poorly. In contrast with the basic tetrapeptide insertion within the haemagglutinin sequence of HKV, two other dipeptide insertions revealed a poorer cleavage with a similar rank order of potency. These results demonstrate that the N-terminal RERR insertion to the wild-type avian RKKR↓ sequence is functionally significant, and suggest that the approx. 5-fold increase in cleavage efficacy contributes to the high infectivity of the H5N1 virus subtype. With regard to RSV peptide processing, PC7 is twice as effective as PC5 and furin. The EBOV peptide was processed with similar efficiency by the three enzymes. Our observations that all of these cleavages can be effectively inhibited by a plant andrographolide derivative at 250µM or less might aid in the design of potent convertase inhibitors as alternative antiviral therapies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3