Moisture-Dependent Physical and Aerodynamics Properties of Cowpea Seeds

Author:

Adetola Olufemi1ORCID,Mary Adenike1ORCID,Lawal Marvelous1ORCID

Affiliation:

1. Federal University of Technology Akure

Abstract

This study focuses on the significant impact of moisture content on the engineering properties of cowpea seeds, which is vital for designing effective agricultural tools, equipment, and machines. We specifically examined two cowpea seed varieties, SAMPEA-16 and SAMPEA-14, across different moisture levels (10, 15, 20, 25, and 30% wb). Our findings show distinct variations in the physical characteristics of these seeds as the moisture content changes. For both SAMPEA-16 and SAMPEA-14, we observed changes in average length, width, and thickness at each moisture level. At moisture contents ranging from 10% to 30% wb, the dimensions for SAMPEA-16 were 11.20 mm by 9.10 mm by 8.61 mm, gradually changing to 10.60 mm by 8.80 mm by 8.50 mm, and for SAMPEA-14, they ranged from 8.30 mm by 6.50 mm by 6.50 mm to 8.40 mm by 6.50 mm by 6.40 mm. Significantly, the 1000 seed mass for SAMPEA-16 increased from 302.30 g to 404.80 g within the 15% to 30% moisture range, while the sphericity varied from 0.849 to 0.877. For SAMPEA-14, similar trends were observed with the sphericity shifting from 0.848 to 0.852. Additionally, the true density for SAMPEA-14 and SAMPEA-16 changed from 1034.12 kg m-³ to 1074.40 kg m-³ and 1089.61 kg m-³ to 1116.87 kg m-3, respectively. Another notable finding is the increase in the angle of repose with moisture content. For SAMPEA-16, it rose from 22.40˚ to 30.23˚, and for SAMPEA-14, from 23.22˚ to 34.28˚, as moisture content increased from 10% to 30%. Furthermore, the terminal velocity for both varieties increased with moisture, with SAMPEA-14 ranging from 4.92 to 5.25, and SAMPEA-16 from 5.72 to 6.16, at 10% to 25% moisture content. The insights from this study are crucial for the design of agricultural machinery, processing units, and storage facilities, aiming to enhance the quality and quantity of cowpea produce.

Publisher

Turkish Journal of Agricultural Engineering Research

Reference33 articles.

1. Abalone R, Cassinera A, Gaston A and Lara MA (2004). Some physical properties of amaranth seeds. Biosystems Engineering, 89(1): 109-117. https://doi.org/ 10.1016/j.biosystemseng.2004.06.012

2. Adejumo OI, Alfa AA and Mohammed A (2007). Physical Properties of Kano white Variety of Bambara Groundnut. Nigerian Academic Forum, (12)1: 68-77.

3. Adekanye AT and Olaoye JO (2018). Performance evaluation of motorized and treadle cowpea threshers. Agricultural Engineering International: The CIGR Journal (CIGR), 15(4): 300-306.

4. Aderinlewo AA, Raji AO and Olayanju TMA (2011). Effect of variety and moisture content on aerodynamic properties of four Nigerian cowpea (Vigna unguiculata) varieties. Journal of Natural Sciences, Engineering and Technology, 10(1): 106-115.

5. Adetola OA, Olukunle OJ, Olalusi AP and Olubanjo OO (2020). Effect of tillage practices on selected engineering properties of cassava (Manihot esculenta) tubers. Nigerian Journal of Technological Development, 17(3): 205-216. http://dx.doi.org/10.4314/njtd.v17i3.7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3