ANALYTICAL APPROACH TO DETERMINE LONGITUDINAL DEFORMATION OF THE EXISTING PRECAST TUNNEL DURING CONSTRUCTION OF A FULL-LENGTH EXCAVATION PIT

Author:

Nguyen Trong TamORCID,Nguyen Van HungORCID

Abstract

In the realm of urban construction employing excavation techniques, safeguarding existing underground structures from detrimental consequences arising from surface construction operations poses a formidable challenge. The reduction of loads due to excavation activities can induce unintended responses, potentially jeopardizing subterranean infrastructure, particularly high-safety-demanding structures like Tunnel Boring Machine (TBM) tunnels. This article introduces an uncomplicated method for ascertaining the axial displacement of TBM tunnels amidst concurrent surface excavation activities. Primarily, the approach entails the identification of stress variations encountered during soil excavation at the tunnel face. Subsequently, employing the solutions derived for the determination of tunnel deformation subjected to concentrated loads, the deformation incurred by the tunnel due to alterations in excavation-induced stress is quantified. The analytical outcomes are meticulously juxtaposed against results generated from a three-dimensional computational model. The comparative analysis demonstrates that the displacement values and axial deviations calculated using the proposed analytical method exhibit only marginal disparities of 4,3% and 1%, respectively, when compared to those obtained through finite element analysis. This study underscores the efficient predictive capabilities of the analytical method in assessing tunnel deformations, enabling a preliminary estimation of critical parameters associated with the excavation pit. These findings have significant implications for mitigating adverse impacts on existing subterranean infrastructure in densely populated urban areas.

Publisher

Publishing House ASV (Izdatelstvo ASV)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3