Influence of the biochar application on the thermal properties of soddy-podzolic soil and on the energy balance fluxes of spring wheat in the Leningrad region under various soil moisture conditions

Author:

Dobrokhotov A. V.1ORCID,Kozyreva L. V.2ORCID

Affiliation:

1. Agrophysical Research Institute Federal Research Centre “V.V. Dokuchaev Soil Science Institute”

2. Agrophysical Research Institute

Abstract

The article presents the results of a field experiment to assess the effect of pre-sowing application of the biochar on the thermal properties of the arable horizon of soddy-podzolic sandy loam soil, on the energy balance components, on the crop surface temperature and on the leaves temperature of spring wheat (variety “Daria”) under various conditions of soil moisture in 2022. The experiment took place at the Menkovo Experimental Station of the Agrophysical Research Institute, located in the Gatchinsky District of the Leningrad Region. The experiment included the plot with the biochar application at the dose of 21.9 t ha-1 and the control plot. The soil thermal properties were measured by the heat pulse method. The components of the energy balance were determined using agrometeorological measurements, radiation balance measurements, crop surface temperature, and phenological measurements. The crop surface temperature was measured by a non-contact method using pyrometers. The soil moisture conditions and available water for wheat were characterized by volumetric soil moisture and evapotranspiration. The volumetric soil moisture was measured using a capacitive soil moisture sensor. The evapotranspiration was determined using the residual term of the energy balance equation through the latent heat flux. According to the results of field experiments, a significant effect (p < 0.05) of the biochar application on the soil thermal properties was found, however, under different moisture conditions, the effect was multidirectional. At zero soil moisture, the biochar application reduced thermal conductivity by 29.7%, reduced volumetric heat capacity by 18.5%, reduced diffusivity by 13.7%, and reduced thermal inertia by 24.3%. Under the conditions of field capacity, the biochar application increased thermal conductivity by 9.4%, reduced volumetric heat capacity by 2.6%, increased diffusivity by 12.3%, and increased thermal inertia by 3.2%. The biochar application significantly (p < 0.05) increased the turbulent heat flux – by 35.5%, which is due to an increase in the crop surface temperature (by 6.4%). Resulting from the decrease in soil evaporation, the biochar application reduced the latent heat flux by 17.0%, and the evapotranspiration by 13.9%. Leaf temperature is related to transpiration. Transpiration can increase when biochar is applied on light-textured soils due to an increase in soil water capacity. The biochar application did not result in significant changes of leaf temperature. The study results are confirmed by numerous articles of both foreign and Russian researchers.

Publisher

V.V. Dokuchaev Soil Science Institute

Subject

Soil Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3