Features of the compound ALM-802 antiarrhythmic action

Author:

Barchukov V. V.1ORCID,Zinchenko V. P.2ORCID,Tsorin I. B.1ORCID,Teplov I. Yu.2ORCID,Stolyaruk V. N.1ORCID,Vititnova M. B.1ORCID,Mokrov G. V.1ORCID,Kryzhanovskii S. A.1ORCID

Affiliation:

1. FSBI “Research Zakusov Institue of Pharmacology”

2. Institute of Cell Biophysics of the Russian Academy of Sciences (ICB RAS)

Abstract

Introduction. Cardiovascular diseases (CVD) remain one of the leading causes of death worldwide, claiming over 17 million lives annually. This highlights the urgent need to develop innovative drugs to combat CVD. One potential target for such drugs is type 2 ryanodine receptors (RyR2), as they play an important role in maintaining ion homeostasis in cardiomyocytes, and their abnormal activity plays a key role in the genesis of cardiac arrhythmias.Research objective is to study the mechanisms underlying the antiarrhythmic action of ALM-802.Methods. In the first stage, in vivo experiments were performed using models of aconitine, calcium chloride, barium chloride arrhythmia, and reperfusion arrhythmias to evaluate the antiarrhythmic effect of the compound ALM-802. The second stage of the study involved electrophysiological experiments performed on hippocampal cells of newborn rats to evaluate the effect of the compound on voltage-gated transmembrane Na+, K+, and Ca2+ ion channels, as well as its effect on intracellular ion concentration of Ca2+. Experiments performed on an isolated myocardial strip evaluated the effect of the compound ALM-802 on the activity of RyR2.Results. In in vivo experiments, the compound ALM-802 (2 mg/kg, iv) exhibits significant antiarrhythmic activity comparable/superior to that shown by the reference drugs procainamide, verapamil, and amiodarone on the models mentioned above. In in vitro experiments, it was shown that ALM-802 (69.8 µM) initiates the inactivation of K+ and Na+ ion channels and does not affect the activity of Ca2+ ion channels. The compound ALM-802 effectively prevents the increase of Ca2+ ion concentration in the cytosol during depolarization of contraction. In addition, experiments on isolated myocardial strips showed that the compound ALM-802 (5x10-5 M) blocks RyR2.Conclusion. Thus, based on the spectrum of its antiarrhythmic activity, the compound ALM-802 combines the properties of antiarrhythmic drugs of class IA or IC and class III according to the E.M. Vaughan Williams classification. In addition, the ALM-802 compound exhibits antagonistic activity towards RyR2. The latter is also considered significant, as it is known that under conditions of myocardial pathology, abnormal activity of RyR2 initiates diastolic leakage of Ca2+ ions from the sarcoplasmic reticulum cysterns, which leads to a decrease in the inotropic function of the left ventricle of the heart and significantly increases the risk of developing malignant cardiac arrhythmias.

Publisher

Publishing House OKI

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3