Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice

Author:

Utama F E,LeBaron M J,Neilson L M,Sultan A S,Parlow A F,Wagner K-U,Rui H

Abstract

Experimental testing of growth, metastatic progression and drug responsiveness of human breast cancer in vivo is performed in immunodeficient mice. Drug candidates need to show promise against human breast cancer in mice before being allowed into clinical trials. Breast cancer growth is under endocrine control by ovarian steroids and the pituitary peptide hormone prolactin. While it is recognized that the most relevant biologic effects of prolactin are achieved with prolactin from the matching species, the biologic efficacy of mouse prolactin for human prolactin receptors has not been recorded. Thus, it is unclear whether the mouse endocrine environment adequately reflects the hormonal environment in breast cancer patients with regard to prolactin. We now show both recombinant and natural pituitary-derived mouse prolactin to be a poor agonist for human prolactin receptors. Mouse prolactin failed to induce human prolactin receptor-mediated biologic responses of cell clustering, proliferation, gene induction and signal transduction, including activation of Stat5, Stat3, Erk1/2 and Akt pathways. Consistent data were derived from human breast cancer lines T-47D, MCF-7 and ZR-75.1, as well as human prolactin receptor-transfected COS-7 and 32D cells. Failure of mouse prolactin to activate human prolactin receptors uncovers a key deficiency of the mouse endocrine environment for human xenotransplant studies. Since most human breast cancers express prolactin receptors, human breast cancer transferred into mice is unnaturally selected for growth in the absence of circulating prolactin. The new insight raises concerns about the validity of analyzing biology and drug responsiveness of human breast cancer in existing mouse xenotransplant models.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3