Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice

Author:

Paglialunga Sabina,Schrauwen Patrick,Roy Christian,Moonen-Kornips Esther,Lu Huiling,Hesselink Matthijs K C,Deshaies Yves,Richard Denis,Cianflone Katherine

Abstract

Activation of C5L2, a G-protein-coupled receptor, by acylation-stimulating protein/complement C3adesArg (ASP/C3adesArg) has been shown to stimulate triglyceride (TG) synthesis in both mature adipocytes and preadipocytes. ASP is an adipocyte-derived hormone that acts by increasing diacylglycerol acyltransferase activity and glucose transport. ASP-deficient mice (C3KO, precursor protein) are lean, display delayed postprandial TG clearance, increased food intake, and increased energy expenditure. The present study shows that C5L2KO mice on a low fat diet are hyperphagic (~60% increase in total food intake) yet maintain the same body weight and adipose tissue mass as wild-type (WT) controls. However, on a high fat diet, average adipocyte size and adipose tissue TG/DNA content were significantly reduced and postprandial TG clearance was delayed in C5L2KO. Adipose tissue TG synthesis (WT: 47.2 ± 5.6 versus C5L2KO: 7.8 ± 1.8 pmol/μg protein, P < 0.001), TG lipolysis (WT: 227.6 ± 36.4 versus C5L2KO: 45.8 ± 5.0 nmol/μg protein, P < 0.001), and fatty acid re-esterification (WT: 85.3 ± 2.4% versus C5L2KO: 59.5 ± 6.8%, P < 0.001) were significantly reduced in C5L2KO mice. Indirect calorimetry measurements revealed C5L2KO mice have unchanged oxygen consumption levels yet reduced respiratory quotient value, suggesting preferential fatty acid utilization over carbohydrate. In agreement, fatty acid oxidation was elevated in heart and skeletal muscle tissue in C5L2KO mice and skeletal muscle levels of uncoupling protein 3 (425.5 ± 86.3%, P < 0.0001), CD36 (277.6 ± 49.5%, P < 0.05), cytochrome c (252.6 ± 33.9%, P < 0.05), and phospho-acetyl CoA carboxylase (118.4 ± 9.3%, P < 0.05) were significantly increased in C5L2KO mice versus WT (100%). The study shows that in response to reduced TG storage in white adipose tissue, C5L2KO mice have developed a compensatory mechanism of increased muscle fat oxidation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3