IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Gαq interaction and protein kinase C-α/CaMKII activation in H9c2 cardiomyoblast cells

Author:

Chu Chun-Hsien,Tzang Bor-Show,Chen Li-Mien,Kuo Chia-Hua,Cheng Yi-Chang,Chen Ling-Yun,Tsai Fuu-Jen,Tsai Chang-Hai,Kuo Wei-Wen,Huang Chih-Yang

Abstract

The role played by IGF-II in signal transduction through the IGF-II/mannose-6-phosphate receptor (IGF2R) in heart tissue has been poorly understood. In our previous studies, we detected an increased expression of IGF-II and IGF2R in cardiomyocytes that had undergone pathological hypertrophy. We hypothesized that after binding with IGF-II, IGF2R may trigger intracellular signaling cascades involved in the progression of pathologically cardiac hypertrophy. In this study, we used immunohistochemical analysis of the human cardiovascular tissue array to detect expression of IGF2R. In our study of H9c2 cardiomyoblast cell cultures, we used the rhodamine phalloidin staining to measure the cell hypertrophy and western blot to measure the expression of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in cells treated with IGF-II. We found that a significant association between IGF2R overexpression and myocardial infarction. The treatment of H9c2 cardiomyoblast cells with IGF-II not only induced cell hypertrophy but also increased the protein level of ANP and BNP. Using Leu27IGF-II, an analog of IGF-II which interacts selectively with the IGF2R, to specifically activate IGF2R signaling cascades, we found that binding of Leu27IGF-II to IGF2R led to an increase in the phosphorylation of protein Kinase C (PKC)-α and calcium/calmodulin-dependent protein kinase II (CaMKII) in a Gαq-dependent manner. By the inhibition of PKC-α/CaMKII activity, we found that IGF-II and Leu27IGF-II-induced cell hypertrophy and upregulation of ANP and BNP were significantly suppressed. Taken together, this study provides a new insight into the effects of the IGF2R and its downstream signaling in cardiac hypertrophy. The suppression of IGF2R signaling pathways may be a good strategy to prevent the progression of pathological hypertrophy.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3