Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature

Author:

Moral Raquel,Wang Richard,Russo Irma H,Lamartiniere Coral A,Pereira Julia,Russo Jose

Abstract

Bisphenol A (BPA), known as an environmental endocrine disruptor, is widely used as a plasticizer. This study aims to investigate whether exposure in utero to BPA alters the architecture, proliferative index, and genomic signature of the rat mammary gland during critical stages of development. Pregnant rats were gavaged with 25 μg BPA/kg body weight (BW; low-dose group) or 250 μg BPA/kg BW (high-dose group) from day 10 post-conception to delivery. Female litters were euthanized at 21, 35, 50, and 100 days, and mammary glands were collected. Analysis of gland morphology was performed from whole-mounted mammary tissue, while proliferative index was determined by detection of bromodeoxyuridine incorporation in the epithelial cells. Genomic profiles were obtained by microarray analysis, and some genes were validated by real-time RT-PCR. BPA exposure induced changes in the mammary gland that were time and dose specific. High-dose exposure resulted in architectural modifications, mainly in the number of undifferentiated epithelial structures of the breast tissue. Proliferative index did not show remarkable differences by the effect of BPA. Low and high doses of BPA changed the gene expression signature of the mammary gland following a different fashion: low dose had the highest effect by 50 days, while high dose had a highest influence on gene expression by 100 days. Both doses presented a significant cluster of up-modulated genes related to the immune system at the age of maximal changes. Moreover, high-dose exposure induced changes in genes related to differentiation suggesting alterations in the normal development of the gland. The increase of undifferentiated structures and the changes in the gene expression profile at different ages suggest that prenatal exposure to BPA can affect the susceptibility of the mammary gland to transformation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3