Granulins: the structure and function of an emerging family of growth factors

Author:

Bateman A,Bennett HP

Abstract

The granulin/epithelin motif defines a family of structurally unique proteins, of great evolutionary antiquity, which have been implicated as regulators of cell growth. Recurrent in granulin research are the surprising parallels between the granulin and EGF systems. Both are cysteinerich peptides of approximately 6 kDa that can modify cell growth. They show similar, but not identical, biological activities, although granulin/epithelin peptides do not bind EGF receptors; the three-dimensional folds of granulin and EGF are partially superimposible; and the precursors for mammalian granulin/epithelins and EGF are both organized as multiple repeats of conserved cysteine modules. Given the dissimilarity between amino acid sequences of members of the granulin/epithelin family and EGF-related peptides, the parallelism between the two systems probably represents convergent evolution towards related solutions to common biological problems. The granulin/epithelin precursor gene is expressed throughout the body, but its expression is predominantly in epithelial and haematopoietic cells. There is a great deal of versatility in the means by which cells process and handle the granulin/epithelin precursor. In some instances, the precursor is secreted intact (Zhou et al. 1993), and in others it is stored in a vesicular organelle, such as the sperm acrosome (Baba et al. 1993a). It may be processed into small 6-kDa peptides, which, in the neutrophil, can also be stored in vesicles (Bateman et al. 1990, Couto et al. 1992). The 6-kDa peptide forms, the intact precursor, and related proteins such as TGFe, regulate the growth of epithelial and mesenchymal cells. Epithelial cells express putative receptors for granulin/epithelin peptides and TGFe (Culouscou et al. 1993, Parnell et al. 1995). Thus, although much remains to be clarified, granulin/epithelin polypeptides and related proteins are emerging as widely distributed potential autocrine and paracrine growth modulating factors for epithelial and mesenchymal cells.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3