Prognostic significance of apoptosis regulators in breast cancer.

Author:

Krajewski S,Krajewska M,Turner B C,Pratt C,Howard B,Zapata J M,Frenkel V,Robertson S,Ionov Y,Yamamoto H,Perucho M,Takayama S,Reed J C

Abstract

Dysregulation of normal programmed cell death mechanisms plays an important role in the pathogenesis and progression of breast cancer, as well as in responses of tumors to therapeutic intervention. Overexpression of anti-apoptotic members of the Bcl-2 family such as Bcl-2 and Bcl-X(L) has been implicated in cancer chemoresistance, whereas high levels of pro-apoptotic proteins such as Bax promote apoptosis and sensitize tumor cells to various anticancer therapies. Though the mechanisms by which Bcl-2 family proteins regulate apoptosis are diverse, ultimately they govern decision steps that determine whether certain caspase family cell death proteases remain quiescent or become active. To date, approximately 17 cellular homologs of Bcl-2 and at least 15 caspases have been identified in mammals. Other types of proteins may also modulate apoptotic responses through effects on apoptosis-regulatory proteins, such as BAG-1-a heat shock protein 70 kDa (Hsp70/Hsc70)-binding protein that can modulate stress responses and alter the functions of a variety of proteins involved in cell death and division. In this report, we summarize our attempts thus far to explore the expression of several Bcl-2 family proteins, caspase-3, and BAG-1 in primary breast cancer specimens and breast cancer cell lines. Moreover, we describe some of our preliminary observations concerning the prognostic significance of these apoptosis regulatory proteins in breast cancer patients, contrasting results derived from women with localized disease (with or without node involvement) and metastatic cancer.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3