Investigating Feed-Forward Back-Propagation Neural Network with Different Hyperparameters for Inverse Kinematics of a 2-DoF Robotic Manipulator: A Comparative Study

Author:

Bouzid Rania1ORCID,Gritli Hassène2ORCID,Narayan Jyotindra3ORCID

Affiliation:

1. Laboratory of Robotics, Informatics and Complex Systems, National Engineering School of Tunis

2. Higher Institute of Information and Communication Technologies

3. Indian Institute of Technology Guwahati

Abstract

Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions plays a crucial role in achieving precise control. This paper presents a study on solving inverse kinematics problems using the Feed-Forward Back-Propagation Neural Network (FFBP-NN) and examines its performance with different hyperparameters. By utilizing the FFBP-NN, our primary objective is to ascertain the joint angles required to attain precise Cartesian coordinates for the end-effector of the manipulator. To accomplish this, we first formed three input-output datasets (a fixed-step-size dataset, a random-step-size dataset, and a sinusoidal-signal-based dataset) of joint positions and their respective Cartesian coordinates using direct geometrical formulations of a two-degree-of-freedom (2-DoF) manipulator. Thereafter, we train the FFBP-NN with the generated datasets using the MATLAB Neural Network Toolbox and investigate its potential by altering the hyperparameters (e.g., number of hidden neurons, number of hidden layers, and training optimizer). Three different training optimizers are considered, namely the Levenberg-Marquardt (LM) algorithm, the Bayesian Regularization (BR) algorithm, and the Scaled Conjugate Gradient (SCG) algorithm. The Mean Squared Error is used as the main performance metric to evaluate the training accuracy of the FFBP-NN. The comparative outcomes offer valuable insights into the capabilities of various network architectures in addressing inverse kinematics challenges. Therefore, this study explores the application of the FFBP-NNs in tackling the inverse kinematics, and facilitating the choice of the most appropriate network design by achieving a portfolio of various experimental results by considering and varying different hyperparameters of the FFBP-NN.

Publisher

Akif Akgul

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3