Overexpression of amiR2937 and amiR854e in Transgenic Arabidopsis thaliana Indirectly Impacts the Photosynthesis Performances by Targeting Specific Target Transcripts in the MEP Pathway

Author:

Che-Wan-Ngah Tuan Aini Nadirah,Che Othman Muhamad Hafiz,Ismail Ismanizan

Abstract

Artificial miRNAs (amiRNAs) are artificial small RNAs engineered to silence specific plant mRNA transcripts. They are generated by expressing a functional microRNA (miRNA) with modified sequences in planta. Two miRNAs, miR2937 and miR854e, were selected based on their predicted target transcript, GGPS2 (geranylgeranyl pyrophosphate synthase 2) and TPS13 (terpenoid synthase 13). In the methylerythritol phosphate pathways, GGPS2 and TPS13 enzymes play a role in synthesizing sesquiterpenes, triterpenes, diterpenoids, carotenoids, gibberellins, and chlorophyll, respectively. Therefore, in this study, these two miRNAs were overexpressed in Arabidopsis thaliana in single and co-overexpression to analyze the change in the abundance of phytol and trans-beta-lone compounds. Through real-time quantitative polymerase chain reaction (RT-qPCR) analysis, a fold-up regulation of amiR2937 and amiR854e was observed in both transgenic plants harboring single and double constructs. Meanwhile, the GGPS2 and TPS13 enzymes showed a decreasing pattern in all transgenic plants, indicating that the miRNAs had successfully suppressed the target transcripts. Solid-phase microextraction-gas chromatography-mass spectrometry analysis revealed that the number of phytols was decreased in all transgenic plants but was significant in plants harboring construct miR854e. Meanwhile, there is an increasing pattern of trans-beta-ionone in all transgenic plants compared to wild-type plants. Consistently, with the decrease in phytol content, soil plant analysis development value, and total chlorophyll content, the photosynthesis rate decreased in the transgenic plants compared to the wild type. Indeed, the overexpression of these two miRNAs affects the production of target transcript and changes the plant development.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3