Comprehensive Review of Cratoxylum Genus: Ethnomedical Uses, Phytochemistry, and Pharmacological Properties
-
Published:2023-02-03
Issue:1
Volume:46
Page:213-241
-
ISSN:2231-8542
-
Container-title:Pertanika Journal of Tropical Agricultural Science
-
language:en
-
Short-container-title:JTAS
Author:
Yin Bok Chui,Jun Low Eric Kat,Augundhooa Digsha,Ariffin Hani’,Bin Mok Yen,Qing Lim Kai,Le Chew Shen,Salvamani Shamala,Er Loh Khye,Loke Chui Fung,Gunasekaran Baskaran,Tan Sheri-Ann
Abstract
In the past, the Cratoxylum genus has often been utilized as traditional medicines, culinary ingredients, health supplements, as well as manufacturing materials. This flowering plant genus belongs to the family Hypericaceae and is classified into six species: Cratoxylum arborescens, Cratoxylum cochinchinense, Cratoxylum formosum, Cratoxylum glaucum, Cratoxylum maingayi, and Cratoxylum sumatranum. The Cratoxylum genus is native to Asia as a traditional medicinal plant. It is currently being translated into conventional therapeutics as a preventive agent for diabetes mellitus and cardiovascular diseases. The phytochemical analysis and pharmacological investigations on the Cratoxylum species have unveiled the wide spectrum of phytoconstituents, including xanthones, triterpenoids, flavonoids, and phenolic compounds. These compounds are attributed to their significant pharmacological effects, such as antibacterial, antifungal, antioxidant, antimalarial, anti-gastric ulcer, anti-HIV-1 reverse transcriptase, antidiabetic, and anticancer activities. These research findings have strengthened the foundation of the Cratoxylum genus as a traditional medicinal plant to be further developed and applied as selective therapeutic drugs for various ailments. This paper discusses the Cratoxylum genus regarding its traditional uses, phytochemical compounds, and pharmacological properties.
Publisher
Universiti Putra Malaysia
Subject
Plant Science,Forestry
Reference63 articles.
1. Ahn, E.-Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering: C, 101, 204-216. https://doi.org/10.1016/j.msec.2019.03.095 2. Bi, W., He, C., Ma, Y., Shen, J., Zhang, L. H., Peng, Y., & Xiao, P. (2016). Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea. Acta Pharmaceutica Sinica B, 6(2), 170-181. https://doi.org/10.1016/j.apsb.2015.11.003 3. Boo, B. C., Omar-Hor, K., & Ou-Yang, C. L. (2003). 1001 Garden plants in Singapore (2nd ed.). National Parks Board. 4. Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K., & Kato, S. (2009). Anti-Pseudomonas aeruginosa xanthones from the resin and green fruits of Cratoxylum cochinchinense. Tetrahedron, 65(15), 3003-3013. https://doi.org/10.1016/j.tet.2009.01.083 5. Boonsri, S., Karalai, C., Ponglimanont, C., Kanjana-opas, A., & Chantrapromma, K. (2006). Antibacterial and cytotoxic xanthones from the roots of Cratoxylum formosum. Phytochemistry, 67(7), 723-727. https://doi.org/10.1016/j.phytochem.2006.01.007
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|