Finite Element Analysis of a Portable Bamboo Girder Used in Emergency Responses

Author:

Musthaffa Azrul Affandhi,Mohamad Nor Norazman,Alhayek Abdulrahman,Alias Yusof Mohammed,Yaakob Mohd Yuhazri

Abstract

This study uses numerical simulation to explore the performance of a portable bamboo girder designed for emergency scenarios and compares it to its steel counterpart. It underscores bamboo’s appeal, offering a lightweight, quickly deployable, and eco-friendly alternative to steel. The research aims to assess bamboo’s viability in emergency bridge construction, utilising SOLIDWORKS and ANSYS to create and simulate bamboo and steel girders. A bamboo girder aimed at humanitarian assistance and disaster relief (HADR) operations was analysed through ANSYS software under a Toyota Hilux truck’s weight. Material properties, loads, and boundary conditions were defined for an accurate simulation. Three individual bamboo culms were tested in four-point flexural experiments, and the results revealed a modulus of elasticity of 14583 MPa and a local failure due to crushing and splitting with an ultimate strength of 263 MPa. Finite element analysis results indicated that the bamboo girder had a stress of 85.56 MPa and a deflection of 84.68 mm. Although the steel girder showed lower deflection, it had significantly higher stresses and weighed 180% more than the bamboo version. The bamboo girder’s deflection surpassed the recommended limit under a fully loaded truck, indicating room for improvement. However, stress analysis revealed that the bamboo’s structural integrity remained below its design strength. Conversely, the steel girder exhibited higher stresses and considerably greater weight. Despite deflection concerns, the bamboo girder demonstrated structural soundness and lower weight compared to steel. This positions it as a viable solution for swift emergency deployment, warranting further refinement for enhanced performance.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3