Algorithm for the Joint Flight of Two Uncrewed Aerial Vehicles Constituting a Bistatic Radar System for the Soil Remote Sensing

Author:

Linets Gennady,Bazhenov Anatoliy,Malygin Sergey,Grivennaya Natalia,Сhernysheva Тatiana,Melnikov Sergey

Abstract

The study of soil agrophysical and agrochemical properties is based on ground-based point measurements and measurements conducted using radiometric remote sensing systems (satellite or airborne). A disadvantage of the existing remote sensing systems using normal surface irradiation is the insignificant depth of penetration of the probing radiation into the soil layer. It is proposed to use a radar system for remote sensing agricultural lands to eliminate this drawback. The system uses a method for assessing the soil’s physical and chemical properties based on the interference measurements of direct and reflected electromagnetic waves at incidence angles that provide a total refraction effect, i.e., close to Brewster’s angle. The possibility of using this method for remote assessment of soil’s physical and chemical properties, including the subsurface layer moisture, was established. A feature of the bistatic system is that it is necessary to coordinate the mutual arrangement of the transmitting and receiving positions, which imposes special requirements on the UAVs’ flight algorithm. The UAVs’ relative position makes it possible to form the conditions for the manifestation of the total refraction effect, to determine the current value of Brewster’s angle, and to fix these conditions for the subsequent flight, making it possible to measure the soil’s physical and chemical parameters. The research results can be used to implement precision farming technology in hard-to-reach places, large agricultural areas, and digital agriculture.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference39 articles.

1. Amazirh, A., Merlin, O., Er-Raki, S., Gao, Q., Rivalland, V., Malbeteau, Y., Khabba, S., & Escorihuela, M. J. (2018). Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sensing of Environment, 211, 321-337. https://doi.org/10.1016/j.rse.2018.04.013

2. Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., & Tuller, M. (2021). Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sensing of Environment, 260, Article 112434. https://doi.org/10.1016/j.rse.2021.112434

3. Bandini, F., Sunding, T. P., Linde, J., Smith, O., Jensen, I. K., Köppl, C. J., Butts, M., & Bauer-Gottwein, P. (2020). Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sensing of Environment, 237, Article 111487. https://doi.org/10.1016/j.rse.2019.111487

4. Barca, E., De Benedetto, D., & Stellacci, A. M. (2019). Contribution of EMI and GPR proximal sensing data in soil water content assessment by using linear mixed effects models and geostatistical approaches. Geoderma, 343, 280-293. https://doi.org/10.1016/j.geoderma.2019.01.030

5. Bargiel, D., Herrmann, S., & Jadczyszyn, J. (2013). Using high-resolution radar images to determine vegetation cover for soil erosion assessments. Journal of Environmental Management, 124, 82-90. https://doi.org/10.1016/j.jenvman.2013.03.049

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3