Chitosan Nanocomposites as Wound Healing Materials: Advances in Processing Techniques and Mechanical Properties
-
Published:2022-12-27
Issue:1
Volume:31
Page:543-575
-
ISSN:2231-8526
-
Container-title:Pertanika Journal of Science and Technology
-
language:en
-
Short-container-title:JST
Author:
Dele-Afolabi Temitope T.,Mohamed Ariff Azmah Hanim,Ojo-Kupoluyi Oluwatosin J.,Atoyebi Ebenezer Oluwatosin
Abstract
This review discusses the increasing potential of chitosan nanocomposites as viable materials capable of targeting these debilitating factors. This review focuses on various techniques used to process chitosan nanocomposites and their mechanical properties. Chitosan nanocomposites are regarded as highly effective antimicrobials for the treatment of chronic wounds. Chitosan nanocomposites, such as chitosan/polyethylene and oxide/silica/ciprofloxacin, demonstrate efficient antibacterial activity and exhibit no cytotoxicity against Human Foreskin Fibroblast Cell Lines (HFF2). Other studies have also showcased the capacity of chitosan nanocomposites to accelerate and improve tissue regeneration through increment in the number of fibroblast cells and angiogenesis and reduction of the inflammation phase. The layer-by-layer technique has benefits, ensuring its suitability in preparing chitosan nanocomposites for drug delivery and wound dressing applications. While the co-precipitation route requires a cross-linker to achieve stability during processing, the solution-casting route can produce stable chitosan nanocomposites without a cross-linker. By using the solution casting method, fillers such as multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HTs) can be uniformly distributed in the chitosan, leading to improved mechanical properties. The antibacterial effects can be achieved with the introduction of AgNPs or ZnO. With the increasing understanding of the biological mechanisms that control these diseases, there is an influx in the introduction of novel materials into the mainstream wound care market.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference93 articles.
1. Abbaspour, M., Makhmalzadeh, B. S., Rezaee, B., Shoja, S., & Ahangari, Z. (2015). Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur Journal of Microbiology, 8(10), Article e24239. https://doi.org/10.5812/jjm.24239 2. Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., Caramella, C., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152-157. https://doi.org/10.1016/j.colsurfb.2013.08.043 3. Aslam, M., Raza, Z. A., & Siddique, A. (2021). Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polymer Bulletin, 78(4), 1955-1965. https://doi.org/10.1007/s00289-020-03194-4 4. Balaji, J., & Sethuraman, M. G. (2017). Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium. International Journal of Biological Macromolecules, 104, 1730-1739. https://doi.org/10.1016/j.ijbiomac.2017.03.115 5. Bedolla-Cázares, F., Hernández-Marcelo, P. E., Gómez-Hurtado, M. A., Rodríguez-García, G., Del Río, R. E., López-Castro, Y., Garcia-Merinos, J. P., Torres-Valencia, J. M., & González-Campos, J. B. (2017). Silver nanoparticles from AgNO3-affinin complex synthesized by an ecofriendly route: Chitosan-based electrospun composite production. Clean Technologies and Environmental Policy, 19(3), 897-906. https://doi.org/10.1007/s10098-016-1285-x
|
|