Transfer learning applied to bivariate forecasting on product warranty data

Author:

Pires Joel Machado,Torelli William,Escobar Luciana

Abstract

The reliability and resource management of products for warranty is important. Furthermore, the number of failures of aproduct over time of use and level of expenditure can assume different distributions. Approaches with parametric modelsbring good results when there is a normal distribution, and the application of Deep Learning (DL) is very promising. Weshow a new methodology for the application of DL models with transfer learning to bivariate forecasts of repair rates inproducts that are under warranty. The solution was applied to data from an American company, recorded from 2015 to2022, of 12 different types of parts from 69 different types of cars. An evaluation of the absolute error of the forecasts wasperformed for each combination of part, car and model year. Tests showed that the model performed well in predictingdata for 70 months in service and 70,000 miles, using data from cars with at least 15 months in service and 1,000 milesas input. It was also concluded that the solution is robust for cases of incomplete data and distributions far from thenormal distribution.

Publisher

UPF Editora

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3