Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity.

Author:

Huttenlocher A1,Ginsberg M H1,Horwitz A F1

Affiliation:

1. Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA. huttenlo@uiuc.edu

Abstract

Integrin cell surface adhesion receptors play a central role in mediating cell migration. We have developed a model system consisting of CHO cells ectopically expressing the alpha IIb beta 3 integrin to study integrin affinity and cytoskeletal interactions during cell migration. The alpha IIb beta 3 integrins are suited for study of integrin receptors during cell migration because they are well characterized with respect to ligand binding, cytoskeletal interactions, and signal transduction, and mutants with altered receptor function are available. The alpha IIb beta 3 receptor specifically mediates migration of alpha IIb beta 3-transfected CHO cells. The migration of transfected CHO cells was studied on a fibrinogen substrate both by time lapse videomicroscopy and by random and haptotactic transwell assays. Haptotactic and random transwell assays measured distinct aspects of migration, with the random transwell assay correlating most closely with time lapse videomicroscopy. Mutations in the cytoplasmic domains that increase ligand affinity or activation of the alpha IIb beta 3 receptor into a high affinity state by the LIBS6 antibody decreased the migration rate. Likewise, mutations that increase cytoskeletal organization without affecting affinity also decreased the migration rate. In contrast, truncation of the beta chain, which alters cytoskeletal associations as assayed by absence of focal adhesions, decreased haptotactic migration while increasing random migration. These effects on the migration rate were partially compensated for by altering substrate concentration, demonstrating optimum substrate concentrations that supported maximal migration. For example, cells expressing integrins locked in the high affinity state showed maximal migration at lower substrate concentrations than cells expressing low affinity receptor. Together, these results implicate the strength of adhesion between cell and substrate, as modulated by receptor affinity, organization of adhesive complexes, and substrate concentration, as important regulators of cell migration rate. Further, we demonstrate a dominant effect of high affinity integrin in inhibiting migration regardless of the organization of adhesive complexes. These observations have potential implications for tumor metastasis and its therapy.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3