Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells.

Author:

Adam T1,Arpin M1,Prévost M C1,Gounon P1,Sansonetti P J1

Affiliation:

1. Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.

Abstract

Shigella flexneri is an enteroinvasive bacterium which causes bacillary dysentery in humans. A major feature of its pathogenic potential is the capacity to invade epithelial cells. Shigella entry into epithelial cells is considered a parasite-induced internalization process requiring polymerization of actin. Here we describe the cytoskeletal rearrangements during S. flexneri invasion of HeLa cells. After an initial contact of the bacterium with the cell surface, distinct nucleation zones of heavy chain actin polymerization appear in close proximity to the contact site underneath the parasite with long filaments being polymerized. These structures then push cellular protrusions that rise beside the entering bacterium, being sustained by tightly bundled long actin filaments organized in parallel orientation with their positive ends pointing to the cytoplasmic membrane. Finally, the cellular projections coalesce above the bacterial body, leading to its internalization. In addition, we found the actin-bundling protein plastin to be concentrated in these protrusions. Since plastin is known to bundle actin filaments in parallel orientation, colocalization of parallel actin filaments and plastin in the cellular protrusions strongly suggested a functional role of this protein in the architecture of parasite-induced cellular projections. Using transfection experiments, we show the differential recruitment of the two plastin isoforms (T- and L-) into Shigella entry zones. By transient expression of a truncated T-plastin which is deprived of one of its actin-binding sites, we also demonstrate the functional role of T-plastin in Shigella entry into HeLa cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3