Molecular size-fractionation during endocytosis in macrophages.

Author:

Berthiaume E P1,Medina C1,Swanson J A1

Affiliation:

1. Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

The sorting of macromolecules within and between membranous organelles is often directed by information contained in protein primary or secondary structure. We show here that absent such structural information, macromolecules internalized by endocytosis in macrophages can be sorted by size. After endocytosis, small solute probes of fluid-phase pinocytosis were recycled to the extracellular medium more efficiently than large solutes. Using macropinosomes pulse labeled with fluorescent dextrans, we examined the ability of organelles to exchange solute contents. Dextran exchange was optimal between organelles of similar age, and small dextrans exchanged more efficiently than large dextrans. Efferent solute movement, from lysosomes or phagolysosomes toward the plasma membrane, occurred through the same endocytic vesicles as afferent movement, toward lysosomes and this movement was solute size dependent. Remarkably, uniform mixtures of different-sized dextrans delivered into lysosomes separated into distinct organelles containing only one dextran or the other. Thus, the dynamics of endosomes and lysosomes were sufficient to segregate macromolecules by size. This intracellular size fractionation could explain how, during antigen presentation, peptides generated by lysosomal proteases recycle selectively from lysosomes to endosomes for association with class II MHC molecules.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3