Dynamics of β-Catenin Interactions with APC Protein Regulate Epithelial Tubulogenesis

Author:

Pollack Anne L.1,Barth Angela I.M.1,Altschuler Yoram1,Nelson W. James1,Mostov Keith E.1

Affiliation:

1. Department of Anatomy, and Department of Biochemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5426

Abstract

Epithelial tubulogenesis involves complex cell rearrangements that require control of both cell adhesion and migration, but the molecular mechanisms regulating these processes during tubule development are not well understood. Interactions of the cytoplasmic protein, β-catenin, with several molecular partners have been shown to be important for cell signaling and cell–cell adhesion. To examine if β-catenin has a role in tubulogenesis, we tested the effect of expressing NH2-terminal deleted β-catenins in an MDCK epithelial cell model for tubulogenesis. After one day of treatment, hepatocyte growth factor/scatter factor (HGF/ SF)-stimulated MDCK cysts initiated tubulogenesis by forming many long cell extensions. Expression of NH2-terminal deleted β-catenins inhibited formation of these cell extensions. Both ΔN90 β-catenin, which binds to α-catenin, and ΔN131 β-catenin, which does not bind to α-catenin, inhibited formation of cell extensions and tubule development, indicating that a function of β-catenin distinct from its role in cadherin-mediated cell–cell adhesion is important for tubulogenesis. In cell extensions from parental cysts, adenomatous polyposis coli (APC) protein was localized in linear arrays and in punctate clusters at the tips of extensions. Inhibition of cell extension formation correlated with the colocalization and accumulation of NH2-terminal deleted β-catenin in APC protein clusters and the absence of linear arrays of APC protein. Continued HGF/ SF treatment of parental cell MDCK cysts resulted in cell proliferation and reorganization of cell extensions into multicellular tubules. Similar HGF/SF treatment of cysts derived from cells expressing NH2-terminal deleted β-catenins resulted in cells that proliferated but formed cell aggregates (polyps) within the cyst rather than tubules. Our results demonstrate an unexpected role for β-catenin in cell migration and indicate that dynamic β-catenin–APC protein interactions are critical for regulating cell migration during epithelial tubulogenesis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3