THE APPEARANCE AND STRUCTURE OF INTERCELLULAR CONNECTIONS DURING THE ONTOGENY OF THE RABBIT OVARIAN FOLLICLE WITH PARTICULAR REFERENCE TO GAP JUNCTIONS

Author:

Albertini David F.1,Anderson Everett1

Affiliation:

1. From the Department of Anatomy and Laboratory of Human Reproduction and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Lanthanum tracer and freeze-fracture electron microscope techniques were used to study junctional complexes between granulosa cells during the differentiation of the rabbit ovarian follicle. For convenience we refer to cells encompassing the oocyte, before antrum and gap junction formation, as follicle cells. After the appearance of an antrum and gap junctions we call the cells granulosa cells. Maculae adherentes are found at the interfaces of oocyte-follicle-granulosa cells throughout folliculogenesis. Gap junctions are first detected in follicles when the antrum appears. In early antral follicles typical large gap junctions are randomly distributed between granulosa cells. In freeze-fracture replicas, they are characterized by polygonally packed 90-Å particles arranged in rows separated by nonparticulate A-face membrane. A particle-sparse zone surrounds gap junctions and is frequently occupied by small particle aggregates of closely packed intramembranous particles. The gap junctions of granulosa cells appear to increase in size with further differentiation of the follicle. The granulosa cells of large Graafian follicles are adjoined by small and large gap junctions; annular gap junctions are also present. The large gap junctions are rarely surrounded by a particle-free zone on their A-faces, but are further distinguished by particle rows displaying a higher degree of organization.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3