Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions.

Author:

Jung G1,Wu X1,Hammer J A1

Affiliation:

1. Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-0301, USA.

Abstract

Dictyostelium cells that lack the myoB isoform were previously shown to exhibit reduced efficiencies of phagocytosis and chemotactic aggregation ("streaming") and to crawl at about half the speed of wild-type cells. Of the four other Dictyostelium myosin I isoforms identified to date, myoC and myoD are the most similar to myoB in terms of tail domain sequence. Furthermore, we show here that myoC, like myoB and myoD, is concentrated in actin-rich cortical regions like the leading edge of migrating cells. To look for evidence of functional overlap between these isoforms, we analyzed myoB, myoC, and myoD single mutants, myoB/myoD double mutants, and myoB/myoC/myoD triple mutants, which were created using a combination of gene targeting techniques and constitutive expression of antisense RNA. With regard to the speed of locomoting, aggregation-stage cells, of the three single mutants, only the myoB mutant was significantly slower. Moreover, double and triple mutants were only slightly slower than the myoB single mutant. Consistent with this, the protein level of myoB alone rises dramatically during early development, suggesting that a special demand is placed on this one isoform when cells become highly motile. We also found, however, that the absolute amount of myoB protein in aggregation-stage cells is much higher than that for myoC and myoD, suggesting that what appears to be a case of nonoverlapping function could be the result of large differences in the amounts of functionally overlapping isoforms. Streaming assays also suggest that myoC plays a significant role in some aspect of motility other than cell speed. With regard to phagocytosis, both myoB and myoC single mutants exhibited significant reductions in initial rate, suggesting that these two isoforms perform nonredundant roles in supporting the phagocytic process. In triple mutants these defects were not additive, however. Finally, because double and triple mutants exhibited significant and progressive decreases in doubling times, we also measured the kinetics of fluid phase endocytic flux (uptake, transit time, efflux). Not only do all three isoforms contribute to this process, but their contributions are synergistic. While these results, when taken together, refute the simple notion that these three "classic" myosin I isoforms perform exclusively identical functions, they do reveal that all three share in supporting at least one cellular process (endocytosis), and they identify several other processes (motility, streaming, and phagocytosis) that are supported to a significant extent by either individual isoforms or various combinations of them.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3