Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates.

Author:

Aubert S1,Gout E1,Bligny R1,Marty-Mazars D1,Barrieu F1,Alabouvette J1,Marty F1,Douce R1

Affiliation:

1. Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique Unité de Recherche Associée 576, Grenoble, France.

Abstract

Autophagy triggered by carbohydrate starvation was characterized at both biochemical and structural levels, with the aim to identify reliable and easily detectable marker(s) and to investigate the factors controlling this process. Incubation of suspension cells in sucrose-free culture medium triggered a marked degradation of the membrane polar lipids, including phospholipids and galactolipids. In contrast, the total amounts of sterols, which are mainly associated with plasmalemma and tonoplast membranes, remained constant. In particular, phosphatidylcholine decreased, whereas phosphodiesters including glycerylphosphorylcholine transiently increased, and phosphorylcholine (P-Cho) steadily accumulated. P-Cho exhibits a remarkable metabolic inertness and therefore can be used as a reliable biochemical marker reflecting the extent of plant cell autophagy. Indeed, whenever P-Cho accumulated, a massive regression of cytoplasm was noticed using EM. Double membrane-bounded vacuoles were formed in the peripheral cytoplasm during sucrose starvation and were eventually expelled into the central vacuole, which increased in volume and squeezed the thin layer of cytoplasm spared by autophagy. The biochemical marker P-Cho was used to investigate the factors controlling autophagy. P-Cho did not accumulate when sucrose was replaced by glycerol or by pyruvate as carbon sources. Both compounds entered the cells and sustained normal rates of respiration. No recycling back to the hexose phosphates was observed, and cells were rapidly depleted in sugars and hexose phosphates, without any sign of autophagy. On the contrary, when pyruvate (or glycerol) was removed from the culture medium, P-Cho accumulated without a lag phase, in correlation with the formation of autophagic vacuoles. These results strongly suggest that the supply of mitochondria with respiratory substrates, and not the decrease of sucrose and hexose phosphates, controls the induction of autophagy in plant cells starved in carbohydrates.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3