Apoptosis induced by inhibition of intercellular contact.

Author:

Bates R C1,Buret A1,van Helden D F1,Horton M A1,Burns G F1

Affiliation:

1. Cancer Research Unit, Faculty of Medicine, University of Newcastle, New South Wales, Australia.

Abstract

The LIM 1863 colon carcinoma cell line grows as structural organoids of goblet and columnar cells around a central lumen and provides a model for the development of stem cells in the normal colon. The organoid structure can be disrupted by removal of calcium from the medium, resulting in a suspension of single cells. Upon readdition of calcium, the cells reform the organoid structure over a period of 24 h, and ultrastructural examination of the reforming cells reveals that this involves a complex process that we have termed clutching. To determine the adhesion molecules involved in organoid formation we attempted to block this process by single cell suspensions of LIM 1863 reseeded in the presence of monoclonal antibodies. An anti-integrin antibody directed against a conformational epitope on the alpha v subunit totally inhibited organoid reformation. As a consequence of this inhibition of cell contact the colon carcinoma cells rapidly underwent apoptosis. Investigations of the apoptotic pathway involved suggested an induction mechanism since the onset of apoptosis in the contact-inhibited cells showed specific increased synthesis of 68- and 72-kD proteins. In addition, immunoblotting of cytosolic and nuclear extracts of the cells revealed the rapid translocation of the tumor suppressor gene product, p53 to the cell nucleus upon induction of apoptosis. These results suggest that cell-cell adhesion may be a vital regulator of colon development overcome in tumor cells by loss of adhesion molecules or of functional p53 protein.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3