Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes.

Author:

Howard R J,Uni S,Aikawa M,Aley S B,Leech J H,Lew A M,Wellems T E,Rener J,Taylor D W

Abstract

Plasmodium falciparum-infected erythrocytes (IRBCs) synthesize several histidine-rich proteins (HRPs) that accumulate high levels of [3H]histidine but very low levels of amino acids such as [3H]isoleucine or [35S]methionine. We prepared a monoclonal antibody which reacts specifically with one of these HRPs (Pf HRP II) and studied the location and synthesis of this protein during the parasite's intracellular growth. With the knob-positive Malayan Camp strain of P. falciparum, the monoclonal antibody identified a multiplet of protein bands with major species at Mr 72,000 and 69,000. Pf HRP II synthesis began with immature parasites (rings) and continued through the trophozoite stage. The Mr 72,000 band of Pf HRP II, but not the faster moving bands of the multiplet, was recovered as a water-soluble protein from the culture supernatant of intact IRBCs. Approximately 50% of the total [3H]histidine radioactivity incorporated into the Mr 72,000 band was extracellular between 2 and 24 h of culture. Immunofluorescence and cryothin-section immunoelectron microscopy localized Pf HRP II to several cell compartments including the parasite cytoplasm, as concentrated "packets" in the host erythrocyte cytoplasm and at the IRBC membrane. Our results provide evidence for an intracellular route of transport for a secreted malarial protein from the parasite through several membranes and the host cell cytoplasm.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 269 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Food Vacuole as a Drug Target;Drug Targets for Plasmodium Falciparum: Historic to Future Perspectives;2024

2. Malaria diagnostics and treatment: future opportunities;Falciparum Malaria;2024

3. Exploration of potential biomarkers and their applications for detection of malaria;Falciparum Malaria;2024

4. Diagnosis and management of malaria in the intensive care unit;Journal of Intensive Medicine;2024-01

5. Malaria prevalence in Commune 5 in Tumaco (Nariño, Colombia);F1000Research;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3