THE MITOTIC APPARATUS

Author:

Kane R. E.1

Affiliation:

1. From the Department of Cytology, Dartmouth Medical School, Hanover, New Hampshire, and the Marine Biological Laboratory, Woods Hole, Massachusetts

Abstract

Previous investigations have shown that the mitotic apparatus (MA) can be isolated from dividing sea urchin eggs in water buffered at pH 5.6 and that the addition of 1 M hexanediol to the solution raises the usable pH to 6.4. Long chain glycols appeared to be much more effective than related compounds in increasing the stability of the MA, and the aim of the investigations reported here was to determine the basis of this specificity. These experiments show that this impression of specificity is misleading and that under suitable experimental conditions a variety of compounds can be substituted for the glycols. A number of alcohols will duplicate the action of the glycols in stabilizing the MA at pH 6.4, but they must be used at a similar per cent concentration rather than at a similar molar concentration. Increases in the concentration of alcohol or glycol allow isolation at more alkaline pH values, and a pH-concentration relation for the stability of the MA, covering the range from pH 5.6–8, has been determined. These results indicate that the action of these compounds in stabilizing the mitotic apparatus is non-specific and is similar to their effects on the solubility of proteins. The isolation and stabilization of the mitotic apparatus can thus be viewed as a function of the solubility properties of its constituent proteins, opening a variety of new experimental approaches to this problem.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Brief History of Research on Mitotic Mechanisms;Biology;2016-12-21

2. Cytoplasmic Microtubules and Radial-Segmented Nuclei (Rieder Cells);Scandinavian Journal of Haematology;2009-04-24

3. Cytoplasmic Microtubules and Radial-Segmented Nuclei (Rieder Cells);Scandinavian Journal of Haematology;2009-04-24

4. Cytoplasmic Microtubules and Radial-Segmented Nuclei (Rieder Cells);Scandinavian Journal of Haematology;2009-04-24

5. Cell and Molecular Biology of the Spindle Matrix;International Review of Cytology;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3