Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism.

Author:

Arribas J1,Massagué J1

Affiliation:

1. Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York 10021.

Abstract

Cleavage and release of membrane protein ectodomains, a regulated process that affects many cell surface proteins, remains largely uncharacterized. To investigate whether cell surface proteins are cleaved through a shared mechanism or through multiple independent mechanisms, we mutagenized Chinese hamster ovary (CHO) cells and selected clones that were unable to cleave membrane-anchored transforming growth factor alpha (TGF-alpha). The defect in TGF-alpha cleavage in these clones is most apparent upon cell treatment with the protein kinase C (PKC) activator PMA, which stimulates TGF-alpha cleavage in wild-type cells. The mutant clones do not have defects in TFG-alpha expression, transport to the cell surface or turnover. Concomitant with the loss of TGF-alpha cleavage, these clones have lost the ability to cleave many structurally unrelated membrane proteins in response to PMA. These proteins include beta-amyloid precursor protein (beta-APP), whose cleavage into a secreted form avoids conversion into the amyloidogenic peptide A beta, and a group of cell surface proteins whose release into the medium is stimulated by PMA in wild type CHO cells but not in mutants. The mutations prevent cleavage by PKC-dependent as well as PKC-independent mechanisms, and thus affect an essential component that functions downstream of these various signaling mechanisms. We propose that regulated cleavage and secretion of membrane protein ectodomains is mediated by a common system whose components respond to multiple activators and act on susceptible proteins of diverse structure and function.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3