Transposition of domains between the M2 and HN viral membrane proteins results in polypeptides which can adopt more than one membrane orientation.

Author:

Parks G D1,Hull J D1,Lamb R A1

Affiliation:

1. Department of Biochemistry, Northwestern University, Evanston, Illinois 60208-3500.

Abstract

The influenza A virus M2 polypeptide is a small integral membrane protein that does not contain a cleaved signal sequence, but is unusual in that it assumes the membrane orientation of a class I integral membrane protein with an NH2-terminal ectodomain and a COOH-terminal cytoplasmic tail. To determine the domains of M2 involved in specifying membrane orientation, hybrid genes were constructed and expressed in which regions of the M2 protein were linked to portions of the paramyxovirus HN and SH proteins, two class II integral membrane proteins that adopt the opposite orientation in membranes from M2. A hybrid protein (MgMH) consisting of the M2 NH2-terminal and membrane-spanning domains linked precisely to the HN COOH-terminal ectodomain was found in cells in two forms: integrated into membranes in the M2 topology or completely translocated across the endoplasmic reticulum membrane and ultimately secreted from the cell. The finding of a soluble form suggested that in this hybrid protein the anchor function of the M2 signal/anchor domain can be overridden. A second hybrid which contained the M2 NH2 terminus linked to the HN signal anchor and ectodomain (MgHH) was found in both the M2 and the HN orientation, suggesting that the M2 NH2 terminus was capable of reversing the topology of a class II membrane protein. The exchange of the M2 signal/anchor domain with that of SH resulted in a hybrid protein which assumed only the M2 topology. Thus, all these data suggest that the NH2-terminal 24 residues to M2 are important for directing the unusual membrane topology of the M2 protein. These data are discussed in relationship to the loop model for insertion of proteins into membranes and the role of charged residues as a factor in determining orientation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3